

Forces of Friction

The coefficient of friction depends on the surfaces in contact.

The force of static friction is generally greater than the force of kinetic friction.

The direction of the frictional force is opposite the direction of motion and parallel to the surfaces in contact.

The coefficients of friction are nearly independent of the area of contact.

Mustafa Al-Zyout - Philadelphia University

29-Sep-2

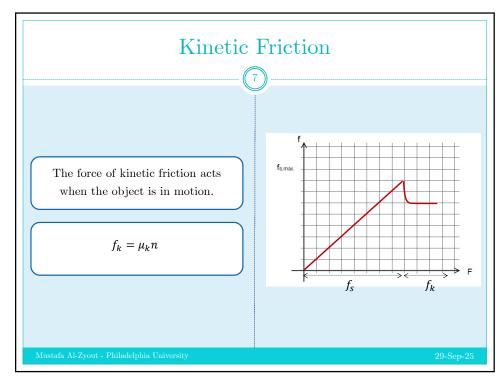
5

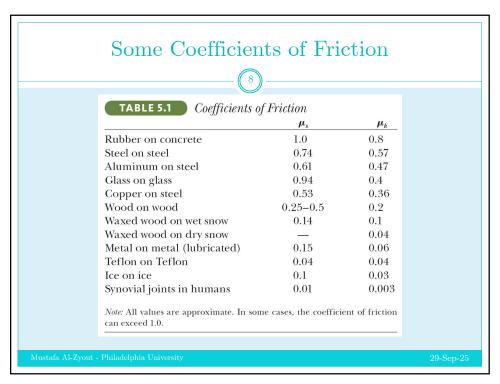
Static Friction

Static friction acts to keep the object from moving.


As long as the object is not moving, f_s = F

If \vec{F} increases, so does \vec{f}_s


If \vec{F} decreases, so does \vec{f}_s


 $f_{s,max.} = \mu_s n$

The equality holds when the surfaces are on the verge of slipping.

29-Sep-25

Friction in Newton's Laws Problems

Friction is a force, so it simply is included in the $\sum \vec{F}$ in Newton's Laws.

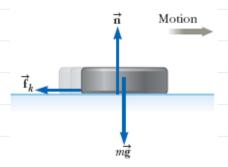
The rules of friction allow you to determine the direction and magnitude of the force of friction.

Mustafa Al-Zvout - Philadelphia Universit

29-Sep-2

Saturday, 30 January, 2021

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.


R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.

J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.

H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.

H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A hockey puck on a frozen pond is given an initial speed of 20 m/s. If the puck always remains on the ice and slides 115 m before coming to rest, determine the coefficient of kinetic friction between the puck and ice.

SOLUTION

Apply the particle under a net force model in the x direction to the puck:

$$(1)\sum F_x = -f_x = ma_x$$

Apply the particle in equilibrium model in the y direction to the puck:

$$(2)\sum F_{y}=n-mg=0$$

Substitute n = mg from Equation (2) and $f_k = \mu_k n$ into Equation (1):

$$-\mu_k n = -\mu_k mg = ma_x$$

$$a_x = -\mu_k g$$

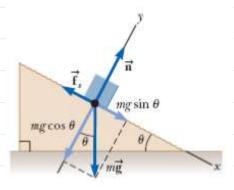
Apply the particle under constant acceleration model to the puck,

$$v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$$
, with $x_i = 0$ and $v_f = 0$:

$$0 = v_{xi}^2 + 2a_x x_f = v_{xi}^2 - 2\mu_k g x_f$$

Solve for the coefficient of kinetic friction:

$$\mu_k = \frac{v_{xi}^2}{2gx_f}$$


Substitute the numerical values:

$$\mu_k = \frac{20.0m/s^2}{2 \times 9.80 \,\text{m/s}^2 \times 115 \,\text{m}} = 0.177$$

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
 - H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
 - H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

Suppose a block is placed on a rough surface inclined relative to the horizontal as shown. The incline angle is increased until the block starts to move. Show that you can obtain μ_s by measuring the critical angle θ_c at which this slipping just occurs.

SOLUTION

The diagram shows the forces on the block: the gravitational force $m\vec{g}$, the normal force \vec{n} , and the force of static friction \vec{f}_s We choose x to be parallel to the plane and y perpendicular to it.

Apply the particle in equilibrium model to the block in both the x and y directions:

$$(1) \sum_{s} F_{x} = mg \sin \theta - f_{s} = 0$$

$$(2)\sum F_{y}=n-mg\cos\theta=0$$

Substitute $mg = n/\cos\theta$ from Equation (2) into Equation (1):

(3)
$$f_s = mg \sin \theta = \left(\frac{n}{\cos \theta}\right) \sin \theta = n \tan \theta$$

When the incline angle is increased until the block is on the verge of slipping, the force of static friction has reached its maximum value $\mu_s n$. The angle θ in this situation is the critical angle θ_c . Make these substitutions in Equation (3):

$$\mu_s n = n \tan \theta_c$$

$$\mu_s = \tan \theta_c$$

Once the block starts to move at $\theta \ge \theta_c$, it accelerates down the incline and the force of friction is $f_k = \mu_k n$. If θ is reduced to a value less than θ_c , however, it may be possible to find an angle θ'_c such that the block moves down the incline with constant speed as a particle in equilibrium again $(a_x = 0)$. In this case, use Equations (1) and (2) with f_s replaced by f_k to find μ_k : $\mu_k = \tan \theta'_c$, where $\theta'_c < \theta_c$.

${f F}$ is greater than ${f f}_{f s}$ Saturday, 30 January, 2021 12:52	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013
A box weighing (100 N) is at rest on a horizontal fluis applied to it? ($\mu_s = 0.34$ and $\mu_k = 0.2$)	oor. What is the acceleration of the box if a horizontal force of (40 N)
The object will move only if:	
F > $f_{s,max}$ $f_{s,max} = \mu_s n = \mu_s mg = 0.34 \times 100 = 34 N$	
∴ The object will move since:	
$F > f_{s,max}$	
$\sum \vec{F}_x = m\vec{a} \Rightarrow F - f_k = ma \Rightarrow F - \mu_k n = ma \Rightarrow$	$F - \mu_k mg = ma$
$\Rightarrow a = \frac{F - \mu_k mg}{m} = \frac{40 - 0.2 \times 100}{10} = 2m/s^2$	
m 10	

F is less than f_s	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.	
Saturday, 30 January, 2021 12:53	H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.	
An object of mass (10 kg) is set on an inclined plane of angle (37°) with the horizontal. Find the force of friction between		
the surfaces (in units of N). ($\mu_s = 0.9$ and $\mu_k = 0.8$)		
The object is about to move when the angle of the ir	nclined plane is:	
$\theta_c = tan^{-1} \mu_s = tan^{-1} 0.9 = 42^\circ$		
Since: $\theta < \theta_c \Rightarrow$		
The object will not move, and:		
$\sum \vec{F}_x = 0$		
$\Rightarrow mg \sin 37 - f_s = 0$		
$\Rightarrow f_s = mg \sin 3.7 = 60N$		

F inclined below the horizontal Saturday, 30 January, 2021 12:53	Lecturer: Mustafa Al-Zyout, Philadelphia University, R. A. Serway and J. W. Jewett, Jr., Physics for Scient J. Walker, D. Halliday and R. Resnick, Fundamentals H. D. Young and R. A. Freedman, University Physics H. A. Radi and J. O. Rasmussen, Principles of Physics	ists and Engineers, 9th Ed., CENGAGE Learning, 2014. of Physics, 10th ed., WILEY,2014.
A block is pushed across a horizontal surface by	the force shown. If the coefficient of	
kinetic friction between the block and the surface	e is (0.3) , $(F = 20 N)$, $(\theta = 30^{\circ})$, and	F M
(M = 3 kg). What is the magnitude of the acceleration	eration of the block?	-13
$\sum_{x} \vec{F}_{x} = m\vec{a}$ $\Rightarrow F \cos 3.0 - f_{x} = ma$		
$\Rightarrow F \cos 3 \ 0 - f_k = ma$ $\Rightarrow F \cos 3 \ 0 - \mu_k \hat{n} = ma$ $\Rightarrow F \cos 3 \ 0 - \mu_k (Mg + F \sin 3 \ 0) = ma$		
$\Rightarrow F\cos 30 - \mu_k (Mg + F\sin 30) = ma$	- 1 0 · · / - 2	
$\Rightarrow 20 \cos 30 - 0.3 \times (3 \times 10 + 20 \sin 30) = 3 \times 6$	$a \Rightarrow a = 1.8m/s^2$	